Preparation and ³¹P NMR Characterization of Nickel Phosphides on Silica

C. Stinner, Z. Tang,¹ M. Haouas,² Th. Weber, and R. Prins³

Laboratory for Technical Chemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland

Received December 20, 2001; revised February 18, 2002; accepted February 20, 2002

We prepared Ni₂P by reduction of an oxidic precursor consisting of nickel oxides and phosphates (P/Ni ratio = 0.5) in a flow of H₂ upon heating to 823 K. SiO₂-supported Ni₂P was prepared by reducing a supported oxidic precursor (P/Ni ratio = 0.65) in a flow of 5% H₂/N₂ upon heating to 1023 K. Supported precursors with a P-to-Ni ratio lower than 0.65 yielded phosphides with a lower P content, such as Ni₃P and Ni₁₂P₅. Furthermore, the flow rate of the reducing agent has a strong effect on which phosphide forms. From temperature-programmed reduction measurements, we concluded that the reduction starts with the formation of Ni metal from NiO at around 600 K. Phosphates are reduced at higher temperatures to volatile P compounds that react with the Ni to Ni₂P, with Ni₃P and Ni₁₂P₅ as possible intermediates. The formed products were characterized by powder X-ray diffractometry and ³¹P MAS NMR spectroscopy. NMR spectroscopy is a powerful tool for identifying the different Ni phosphides on the support. The metallic character of Ni₃P, Ni₁₂P₅, and Ni₂P classifies their large ³¹P NMR shifts as Knight shifts, which enables them to be distinguished from those of diamagnetic phosphates. © 2002 Elsevier Science (USA)

Key Words: supported catalysts; reduction; hydrogen; transitionmetal phosphides; nickel compounds; MAS NMR; Knight shift.

1. INTRODUCTION

Catalysts containing metallic nickel are widely used as hydrogenation catalysts (1). By adding elements such as phosphorus or boron, Ni catalysts can be chemically modified (2). This type of modification may lead to the formation of alloys or intermetallic compounds, the structural or electronic properties of which differ from the pure metal (3, 4). Depending on the preparation method, the resulting catalyst contains either an amorphous Ni–P alloy or a nickel phosphide of defined stoichiometry, e.g., Ni₂P.

The phase diagram of nickel and phosphorus is very complex (5). Eleven phases have been reported in the literature with compositions ranging from Ni_3P to NiP_3 . In the Ni-rich

² Current Address: Laboratoire de Physico-Chimie des Hydrocarbures, UMR 7513, Institut Le Bel, Université Louis Pasteur, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France.

³ To whom correspondence should be addressed. Fax: +41 1 632 1162. E-mail: prins@tech.chem.ethz.ch.

region of the phase diagram (<40 at% P), the phases Ni₃P, α -Ni₅P₂, γ -Ni₁₂P₅, and Ni₂P are reported to be stable up to temperatures between 1173 and 1273 K. The solid solubility of P in Ni is limited and reaches a maximum of 0.32 at% P at 1146 K (5). Up to 25 at% P (=Ni₃P) no thermodynamically stable phases have been reported. However, this compositional range is accessible through the amorphous Ni–P alloys.

Amorphous Ni–P alloys are prepared for the most part by rapid quenching of melts (6) or by a process known as electroless chemical deposition, i.e., the autocatalytic reduction of Ni²⁺ ions by hypophosphite ions H₂PO₂⁻ (7). Unsupported amorphous Ni–P alloys can be prepared by both methods (8), whereas supported amorphous Ni–P alloys can be prepared by electroless chemical deposition only (9, 10). The amorphous catalysts show an enhanced activity compared with crystalline Ni catalysts (3). However, the amorphous character of the catalysts is an inherent problem. Since these phases are metastable, they tend to crystallize at elevated temperatures, which goes along with sintering and deactivation (10). The crystallization product consists mainly of Ni mixed with Ni₃P since the P content tends to be rather low (<20 at% P) (11).

Preparation methods of stoichiometrically defined crystalline Ni–P compounds include the direct reaction from the elements at high temperatures (12) as well as the reduction of precursors containing nickel phosphates in a flow of H_2 at moderately high temperatures (13). The reduction in H_2 gas has been employed to prepare unsupported as well as supported nickel phosphide catalysts that were tested in hydrogenation and hydrodenitrogenation reactions (14–17). Those catalysts mainly contain Ni₂P as the active component.

Recently, we studied the activity of a number of transition-metal phosphides in the removal of nitrogen (hydrodenitrogenation) from *o*-propylaniline (18). All the tested compounds were active. However, they were unsupported, with the consequence that the surface area was rather low. To increase the active surface area, the dispersion of the phosphides on a high-surface carrier such as γ -Al₂O₃ or SiO₂ is desirable. Among the unsupported transition-metal phosphides, crystalline Ni₂P forms easiest at a fairly low reduction temperature. Therefore, we studied

¹ Current Address: Department of Chemistry, PSI 107, Oklahoma State University, Stillwater, Oklahoma 74078.

TABLE 1

the preparation of Ni₂P on a support. γ -Al₂O₃ is known to react with phosphate to form aluminum phosphates on the surface (19, 20). The formation of aluminum phosphates competes with the formation of phosphides, because the stability of aluminum phosphates toward reduction is very high (19). Therefore, we started with amorphous SiO₂ as the support, which interacts to a lesser extent with phosphates. By adapting the reaction parameters of the reduction in H₂ gas, Ni₂P supported on SiO₂ was prepared and identified by powder X-ray diffraction as well as by ³¹P MAS NMR spectroscopy.

2. EXPERIMENTAL

2.1. Synthesis

Unsupported Ni₂P was prepared as follows: Diammonium hydrogen phosphate $(NH_4)_2HPO_4$ was dissolved in deionized water, and then a solution of nickel nitrate Ni(NO₃)₂ · 6H₂O was added (all Fluka, puriss. p.a.). The amounts of the nickel salt and phosphate were chosen according to the stoichiometry of the corresponding nickel phosphide, Ni₂P. After evaporation of the water, the obtained solid was calcined in air at 773 K for 5 h and then reduced in a stream of H₂ (99.999%, 300 ml · min⁻¹) at 823 K (14, 15, 17).

Supported phosphides were prepared by pore volume impregnation of a silica support. The silica support (chromatography gel, C-560, CU Chemie Uetikon; surface area, 500 m² · g⁻¹; pore volume, 1 ml · g⁻¹) was first ground, sieved (63–90 µm), and then dried for 12 h at 423 K. In a first impregnation step, an aqueous solution of 1.125 M $Ni(NO_3)_2 \cdot 6H_2O$ was added drop by drop to the support. After drying at 423 K for 5 h, an 0.562 M aqueous solution of $(NH_4)_2$ HPO₄ was added. The loadings were calculated from the amounts used in the impregnation procedure. The Ni loading of the calcined precursors was 5.9% and the P loading 1.5, 1.7, or 2.0%. After drying at 423 K for 5 h the impregnated support was calcined at 623 K for 5 h. Reduction of the obtained precursor was done at 1023 K (heating rate, 2 K \cdot min⁻¹) in a flow of a 5% H₂/N₂ mixture or in pure H₂ at a flow rate between 10 and 600 ml \cdot min⁻¹. Reduction conditions are summarized in Table 1. Finally, the surface of the samples was passivated in a flow of 0.5% O_2/He (20 ml · min⁻¹) for 2 h at room temperature. The samples prepared in the TPR instrument (see below) were not passivated. The calcined silica-supported samples are designated according to the increasing percentage of P as NiP_{0.5}, NiP_{0.55}, and NiP_{0.65}; the number is the P/Ni atomic ratio.

2.2. Characterization

XRD measurements were carried out with a Siemens D-5000 powder X-ray diffractometer (Cu $K\alpha$ radiation) with Bragg–Brentano geometry. A sample was pressed into a

Synthesis Conditions for Ni ₂ P and Supported Samples and the
Products as Detected by XRD, Including Their Crystallite Size

Sample	Temperature program ^a	Flow $(ml \cdot min^{-1})$	Gas	Products ^b	Crystallite size (nm) ^c
Unsupported NiP _{0.5}	823	300	H_2	Ni ₂ P	70
NiP _{0.5}	473/723 ^d	300	H_2	Ni	10
NiP _{0.5}	523/1023	10	5% H ₂ /N ₂	Ni ₃ P	25
NiP _{0.5}	523/1023	50	5% H ₂ /N ₂	Ni ₁₂ P ₅	25
NiP _{0.55}	523/1023	50	5% H ₂ /N ₂	Ni ₁₂ P ₅ Ni ₂ P	30 50
NiP _{0.55}	523/1023	200	$5\% H_2/N_2$	Ni ₁₂ P ₅ Ni ₂ P	30 50
NiP _{0.55}	523/1023	600	$5\% H_2/N_2$	Ni ₁₂ P5 Ni ₂ P	30 50
NiP _{0.65}	523/1023	200	$5\% \ H_2/N_2$	Ni ₂ P	45

^{*a*} The temperature was increased from RT to the first indicated temperature (in K) at 2 K \cdot min⁻¹ and then to the final temperature at 1 K \cdot min⁻¹. The unsupported NiP_{0.5} sample was heated to 823 K at 1 K \cdot min⁻¹.

^b Observed by XRD.

^{*c*} According to the Scherrer equation: $d=0.9\lambda(\beta_{1/2}\cos\theta)^{-1}$, where $d = \text{mean crystallite size in nm}, \lambda = X$ -ray wavelength in nm, $\beta_{1/2} = \text{full}$ width at half maximum of a peak in radians, and $\theta = \text{reflection angle in degrees.}$

^d This sample was left at 723 K for 60 min. All the others were left at the final reduction temperature for 15 min.

flat-bed sample holder, which was rotated during the measurement. All the patterns were compared with calculated patterns using the software PowderCell 2.3 (21). The singlecrystal data of Ni₃P, Ni₁₂P₅, and Ni₂P were used as structure input files (22). The PowderCell software facilitates the full pattern fitting of observed powder patterns, and mixtures of crystalline phases can be analyzed in terms of composition. The weight percentage of a phase is given by the ratio of the sum of its integrated intensities and the total intensity of all the phases, taking the densities (as calculated by the PowderCell software) and the cell volumes of all the phases into consideration. The relative errors were estimated to be 10%. The mean crystallite size of a phase was estimated according to the Scherrer equation.

Temperature-programmed reduction (TPR) experiments were carried out with a Micromeritics AutoChem 2910 apparatus. For the measurements, a sample was placed in a quartz U-tube and reduced in a flow of a 4.8% H₂/Ar mixture. ³¹P NMR spectra were obtained with an Advance 400 WB Bruker spectrometer equipped with a magic-angle-spinning probe. The ³¹P NMR frequency was 161.9 MHz and 85% phosphoric acid was used as an external reference. Samples were ground; in the case of the unsupported Ni₂P they were mixed with 50 wt% of pure silica powder to provide electrical insulation between the metallic particles and, thus, to avoid the appearance of eddy currents within the sample. The resulting samples were packed in a

4-mm-diameter rotor and spun at 10–15 kHz. The spectra were obtained by Fourier transforming the free induction decay signals. Spectra were acquired using a single 1.8- μ s pulse causing a flip angle of about $\pi/4$ and a recycle time of 1 s. The measurements were performed at room temperature with 1800 scans. The ³¹P shift anisotropy was determined from the spinning sideband intensities in the MAS spectra (23). Spectra were simulated using a modified version of the Bruker Winfit program (24).

3. RESULTS

3.1. Preparation of Unsupported Ni₂P

The preparation of unsupported dinickel phosphide, Ni₂P, by reduction in flowing H₂ gas is straightforward (14, 15). An appropriate amount of an aqueous solution of Ni(NO₃)₂ \cdot 6H₂O was added to an aqueous solution of $(NH_4)_2$ HPO₄ so that a mixture results containing nickel and phosphorus in a ratio of 2:1. Upon addition of the nickel-containing solution a light green precipitate was formed that contained different nickel phosphates, e.g., $Ni_3(PO_4)_2 \cdot 8H_2O$ or $(NH_4)NiPO_4 \cdot H_2O$, as reported in the literature (25). Upon drying and calcination volatile compounds such as H₂O, NH₃, and nitrous gases were expelled. The resulting light brown solid consisted of NiO (from XRD results, not shown here) and nickel phosphates of different composition (from Raman measurements, not shown here). Nevertheless, from this heterogeneous mixture only Ni₂P formed upon reduction in a flow of H₂ gas while heating to 823 K at a heating rate of 1 K \cdot min⁻¹, since no other phases were detected in the XRD powder pattern (Fig. 1). However, the preparation of Ni₂P supported on amorphous silica was more complicated.

3.2. Preparation of Supported Nickel Phosphides

Oxidic precursors of supported nickel phosphides were prepared by pore volume impregnation. Two impregnation

FIG. 1. XRD powder patterns of unsupported Ni_2P : calculated (a) and observed (b).

FIG. 2. Observed XRD powder patterns of the sample NiP_{0.5} reduced at different flow rates and temperatures: (a) 300 ml·min⁻¹ H₂/723 K, (c) 10 ml·min⁻¹ 5% H₂/N₂/1023 K, (e) 50 ml·min⁻¹ 5% H₂/N₂/1023 K; calculated patterns of (b) Ni₃P and (d) Ni₁₂P₅.

steps were necessary to introduce Ni and P onto the SiO₂ support, because in a one-step impregnation an insoluble precipitate of nickel phosphate forms on mixing aqueous solutions of Ni(NO₃)₂ · 6H₂O and (NH₄)₂HPO₄, as described above for the unsupported Ni₂P. The impregnation was started with the Ni(NO₃)₂ · 6H₂O solution to achieve good dispersion of the Ni²⁺ cations on the SiO₂ surface. After an intermediate drying step the (NH₄)₂HPO₄ solution was added to the support. Further drying and calcination at 623 K yielded the supported precursor.

When the NiP_{0.5} precursor was reduced in pure H₂ gas at 723 K, no Ni₂P was detected in the XRD pattern. Only cubic Ni metal was formed (Fig. 2a). To determine whether phosphate was still present, we measured the TPR profile of the reduced and passivated NiP_{0.5} sample up to 1023 K (Fig. 3a). In the TPR profile, only one signal, at 367 K, was observed, which can be attributed to the reduction of (surface) Ni oxide formed during or after the passivation. The consumption of H₂ showed that about 30% of the Ni was present as Ni²⁺. No further signal was detected up to 1023 K.

When we performed a TPR experiment on the oxidic NiP_{0.5} precursor, we observed a TPR profile with two maxima around 610 and 830 K and a shoulder around 880 K (Fig. 3b). The sample contained 128 µmol of Ni²⁺ and 64 µmol of phosphate species with P in the oxidation state of 5+. If Ni²⁺ and P⁵⁺ are reduced to Ni⁰ and P⁰, then a total H₂ consumption of 288 µmol is expected. The experimentally observed peak areas correspond to a H₂ consumption of 300 µmol, in agreement with the theoretically expected value within the experimental error of 10%.

Figure 3c shows the TPR profile of the unsupported $NiP_{0.5}$ precursor. The reduction started at about 600 K and

FIG. 3. TPR profiles of (a) NiP_{0.5} (after reduction at 723 K in 300 ml \cdot ml⁻¹ H₂ for 1 h and passivation), (b) the oxidic NiP_{0.5} precursor (1023 K, 2 K \cdot min⁻¹, 50 ml \cdot min⁻¹ 4.8% H₂/Ar), (c) the unsupported oxidic NiP_{0.5} precursor (1023 K, 10 K \cdot min⁻¹, 50 ml \cdot min⁻¹ 4.8% H₂/Ar), (d) the oxidic NiP_{0.5} precursor (1173 K, 5 K \cdot min⁻¹, 10 ml \cdot min⁻¹ 4.8% H₂/Ar), and (e) the unsupported oxidic NiP_{0.5} precursor (1173 K, 5 K \cdot min⁻¹, 10 ml \cdot min⁻¹ 4.8% H₂/Ar).

was finished at about 920 K. The H₂ consumption corresponded to a complete reduction to Ni₂P. The sample contained 380 µmol of Ni²⁺ and 190 µmol of phosphate species with P in an oxidation state of 5+. Thus, the expected total H₂ consumption is 855 µmol of H₂, which is in good agreement with the experimentally observed value of 882 µmol of H₂. Four features can be distinguished in this TPR profile: a shoulder at 660 K; two large peaks, with maxima around 750 and 820 K; and a smaller peak at 890 K. A comparison with the TPR profile of the supported NiP_{0.5} sample shows that the support has a strong influence on the reduction behavior. The TPR results show that the reduction of supported NiP_{0.5} was complete around 930 K. Therefore, we performed subsequent reductions up to 1023 K.

The increase in temperature led to the formation of different Ni phosphides. The type of Ni phosphide that formed depended strongly on the gas flow rate. With a low flow rate, Ni₃P formed (Fig. 2c), and in the 2 θ range from 40 to 48° a broad reflection was present underneath the reflections of Ni₃P. When the flow rate of the reducing agent was increased to 50 ml · min⁻¹, the formation of Ni₁₂P₅ was observed (Fig. 2e). Nevertheless, we were not able to obtain the desired Ni₂P product. Therefore, we increased the amount of phosphate in the precursor relative to Ni. If a reactive P species forms in the gas phase and reacts with the Ni, then an increase in the concentration of this volatile species might have a beneficial effect on the P content of the eventual nickel phosphide.

Figures 4a–4c show the XRD patterns of the materials obtained from the oxidic $NiP_{0.55}$ precursor after reduction

to 1023 K in 5% H₂/N₂ at a flow rate between 50 and $600 \text{ ml} \cdot \text{min}^{-1}$. All three samples contain a mixture of Ni₂P and Ni₁₂P₅. The Ni₂P-to-Ni₁₂P₅ ratio increased as the flow rate increased. The samples obtained for flow rates of 200 and 600 ml $\cdot \text{min}^{-1}$ had more or less the same composition and contained 80% Ni₂P and 20% Ni₁₂P₅, whereas the sample obtained at 50 ml $\cdot \text{min}^{-1}$ contained 50% Ni₂P and 50% Ni₁₂P₅. Ni₂P was the only phosphide obtained with the NiP_{0.65} precursor with an even higher P content than the other precursors in combination with the sufficiently high flow rate of 200 ml $\cdot \text{min}^{-1}$ (Fig. 4d). According to the estimated crystallite sizes given in Table 1, all supported samples contain nickel phosphide particles that are smaller than those of the unsupported Ni₂P sample.

The influence of the flow rate on the reduction behavior was also observed in the TPR profiles of the supported and unsupported NiP_{0.5} samples (Figs. 3d and 3e). Compared with the results shown in Fig. 3b, the influence of the lower flow rate on the TPR profile of the supported NiP_{0.5} sample can be clearly seen (Fig. 3d). The reduction begins at 600 K and is finished at around 1100 K. The overall shape of the two profiles is very similar, but all the maxima are shifted toward higher temperatures (660, 880, 930, and 1080 K) and the profile is stretched. On the other hand, the TPR profile of unsupported NiP_{0.5} was barely affected by a lower flow rate. The reduction started at 580 K and was finished at 900 K.

3.3. ³¹ P MAS NMR Results

Phosphorus contains only one isotope, ³¹P, with a nuclear spin of I = 1/2. This and the high magnetic moment (which results in a high sensitivity) make it an interesting nucleus for NMR spectroscopy. Solid state NMR gives insight into the structure of solids and enables us to probe the local

FIG. 4. Observed XRD powder patterns of the samples $NiP_{0.55}$ (a–c), and $NiP_{0.65}$ (d) reduced to 1023 K in a flow of 5% N_2/H_2 at the flow rates indicated. *, $Ni_{12}P_5$; \blacklozenge , Ni_2P .

FIG. 5. ³¹P MAS NMR spectra of Ni₃P/SiO₂ (NiP_{0.5}; 10 ml · min⁻¹ 5% H₂/N₂, 1023 K) at two different spinning rates (a, 10 kHz; b, 13 kHz). Centerbands are indicated by triangles. Simulated NMR spectra are displayed below each trace.

environment of a nucleus. Unlike X-ray diffraction, NMR spectroscopy is not restricted to materials with long-range order but can also be applied to amorphous substances. In our samples, phosphorus is present as crystalline phosphides and in the form of phosphates. As a first step, we wanted to find out whether ³¹P MAS NMR distinguishes between the different species. On the basis of our XRD results, we measured the ³¹P MAS NMR spectra of those samples that contained crystalline Ni phosphides (Ni₃P, Ni₁₂P₅, Ni₂P). The observed spectra are shown in Figs. 5–7.

The NMR shift range from +500 to +5000 ppm revealed only one sideband pattern with an isotropic chemical shift of 1797 ± 5 ppm for the NiP_{0.5} sample containing Ni₃P supported on SiO_2 (Fig. 5). The spectra of all the measured phosphides showed strong distortions of the baseline, and first-order phase corrections were necessary in most cases. Using the Winfit software, the centerband with the sideband pattern was fitted according to the method of Herzfeld and Berger (23). Table 2 presents the values of the fitted parameters (isotropic chemical shift δ_{iso} , chemical shift anisotropy δ_{CSA} , asymmetry parameter η), which describe the chemical shift anisotropy, as well as the observed linewidths for all the reported spectra.

Figure 6 shows the two sideband patterns that were observed at each of two different spinning rates for the NiP_{0.5} sample that contained Ni₁₂P₅ supported on SiO₂. The isotropic chemical shifts were 1940 and 2262 ± 5 ppm. The fitted spectra are plotted below the experimental spectra. Two sideband patterns were observed for the unsupported Ni₂P as well as for the Ni₂P supported on SiO₂. Figure 7 shows the spectra obtained for both materials at a spinning rate of 10 kHz. The isotropic chemical shifts are 1487

TABLE 2

³¹P MAS NMR Results

Sample	v _{rot} (kHz)	$\delta^a_{ m iso}$ (ppm)	FWHM ^b (kHz)	δ^a_{CSA} (ppm)	η^a
Ni ₃ P/SiO ₂	10	1796	1.0	-135	0.9
Ni ₃ P/SiO ₂	13	1798	1.0	-136	0.9
Ni ₁₂ P ₅ /SiO ₂	10	1941	1.8	173	0.1
		2259	1.4	241	0.4
Ni ₁₂ P ₅ /SiO ₂	13	1938	1.8	168	0.1
		2264	1.3	241	0.4
Ni ₂ P/SiO ₂	10	1487	1.0	-271	0
		4081	2.5	-73	0.85
Ni ₂ P	10	1487	1.2	-284	0.55
		4076	4.1	120	0.7

 ${}^{a} \delta_{iso}$, δ_{CSA} , and η are defined by the principal elements (δ_{ii}) of the chemical shift tensor as $\delta_{iso} = 1/3(\delta_{11} + \delta_{22} + \delta_{33})$; $\delta_{CSA} = \delta_{33} - \delta_{iso}$; $\eta =$ $(\delta_{22} - \delta_{11})/(\delta_{33} - \delta_{iso})$ with $|\delta_{33} - \delta_{iso}| \ge |\delta_{11} - \delta_{iso}| \ge |\delta_{22} - \delta_{iso}|$.

^b Full width at half maximum.

and 4081 ppm (supported) and 1487 and 4076 ppm (unsupported). The relative intensities of the sideband pattern of unsupported Ni₂P at 1487 ppm differs significantly from those of supported Ni_2P , as indicated by the asymmetry parameter $\eta = 0$ for the supported Ni₂P and $\eta = 0.55$ for the unsupported Ni₂P. Other samples containing supported

FIG. 6. ³¹P MAS NMR spectra of $Ni_{12}P_5/SiO_2$ (NiP_{0.5}; 50 ml · min⁻¹ 5% H₂/N₂, 1023 K) at two different spinning rates (a, 10 kHz; b, 13 kHz). Centerbands are indicated by triangles. Simulated NMR spectra are displayed below each trace.

FIG. 7. ³¹P MAS NMR spectra of (a, b) Ni₂P/SiO₂ (NiP_{0.65}; 200 ml \cdot min⁻¹ 5% H₂/N₂, 1023 K) and (c, d) unsupported Ni₂P at a spinning rate of 10 kHz. Centerbands are indicated by triangles. Simulated NMR spectra are displayed below each trace.

Ni₂P yielded asymmetry parameter values between 0 and 0.1. The sideband pattern around the band at 4081 ppm was also detected for the other supported Ni₂P samples. However, in unsupported Ni₂P, the centerband of the respective pattern is shifted to 4076 ppm, and the fitting gives a different chemical shift anisotropy as well a slightly different value for η . Especially in the case of the unsupported Ni₂P a large linewidth caused a strong overlap of the bands so that the baseline was not well-defined (Fig. 7c).

No further signals were detected in the unsupported Ni₂P. In all the supported samples, additional peaks were detected in the region around and below 0 ppm. Three peaks, at around +2, -8, and -21 ppm, typical of phosphate species such as $H_nPO_4^{(3-n)-}$, $P_2O_7^{4-}$, and $(PO_3^{-})_n$, were usually detected (26, 27). No signals were detected below -30 ppm, indicating that no silicon phosphates were formed (characterized by chemical shifts from -30 to -50 ppm) (28).

4. DISCUSSION

All the TPR profiles have a small peak in common between 600 and 660 K (Fig. 3), which is attributed to the reduction of NiO (29). NiO should be present in all the samples because of the surplus Ni²⁺ compared with the amount of phosphate that is present as PO_4^{3-} , $P_2O_7^{4-}$, or $(PO_3^{-})_n$ after calcination (25, 30). For instance, if one assumes that the phosphate species present after calcination is diphosphate $P_2O_7^{4-}$, then two Ni²⁺ ions will be sufficient to compensate for the negative charge of the diphosphate anions. Since the atomic ratio Ni/P is 2:1, 50% of the Ni²⁺ ions must compensate for their charges by O²⁻ ions or hydroxyl species from the aqueous impregnation solution or from the silica surface. Louis et al. detected NiO, Ni(OH)₂, and nickel phyllosilicates on SiO₂ samples impregnated with a $Ni(NO_3)_2 \cdot 6H_2O$ solution (31). They also observed that most of the H₂ consumption for a SiO₂-supported Ni sample, prepared in a manner similar to ours, occurred at around 653 K. This would explain why Ni was detected as the only crystalline phase in the sample that was reduced at 723 K (Figs. 2a and 3a), because the reduction temperature was high enough to reduce NiO but not phosphate. It is not clear why H₂ consumption in the TPR of the reduced and passivated NiP_{0.5} sample was not observed at higher temperatures. Only Ni was detected by XRD, so it is assumed that phosphate is still present. The fact that H_2 consumption was not observed at higher temperatures (Fig. 3a) implies either that no phosphate was left on the support or that some of the phosphate reacted with the SiO₂ surface to silicon phosphates, which may be highly stable against reduction. Krawietz et al. reported the formation of silicon phosphates, e.g., $Si_5O(PO_4)_6$, SiP_2O_7 , and $SiHP_3O_{10}$, in a study of solid phosphoric acid catalysts prepared by impregnating SiO_2 with H_3PO_4 followed by calcination (28). Assuming that the formed Ni acts as a hydrogenation catalyst, then it is not unlikely that phosphate is no longer present after reduction. A temperature of 723 K would be high enough to catalyze the reduction of the phosphate to volatile P species such as phosphines $P_x H_y$ but would be too low for the formed $P_x H_y$ to react with Ni metal to a phosphide. Since the TPR profiles of the precursors show considerable consumption of H_2 at higher temperatures, we conclude that a minimum temperature is necessary for the reduction as well as for the formation of nickel phosphides.

The H_2 concentration may also have an effect on the reduction behavior. A higher H_2 concentration would lead to a higher reaction rate for a reaction that has a positive order in H_2 . The use of pure H_2 might cause local heating and sintering of the precursor particles. Bigger particles are harder to reduce since the H_2 must diffuse into the bulk and the formed water must leave the bulk. Therefore, we diluted the H_2 as in the TPR experiments. In the case of supported molybdenum and iron oxides, H_2/N_2 gas mixtures may lead to the formation of nitrides. However, it has been reported that Ni nitrides are not stable in the presence of H_2 above 440 K (32, 33).

Not only the composition of the reduction gas but also the flow rate has a strong effect on the reduction behavior of supported catalysts. The reason is that upon reduction, water forms from the oxidic Ni and phosphate species and the pores of the support hinder the diffusion of the H₂O. The higher the vapor pressure of H₂O within the pores, the more the equilibria are shifted to the side of the oxidic Ni and phosphate species:

$$NiO + H_2 \rightleftharpoons Ni + H_2O,$$

$$P_2O_5 + 5H_2 \rightleftharpoons P_2 + 5H_2O,$$
or
$$P_xO_y^{(2y-5x)-} + 2.5xH_2 \rightleftharpoons x/2P_2 + (5x-y)H_2O$$

$$+ (2y-5x)OH^-.$$

The influence of the flow rate on the reduction rate was clearly demonstrated by Burratin et al. when they studied the product properties of SiO₂-supported Ni obtained by reduction in H_2/Ar (34). They concluded that an increase in the flow rate facilitates the quicker removal of the water formed upon reduction. This shifts the maximum of the reduction to lower temperatures. In addition, they found that the formed Ni particles are smaller, because the removal of water diminishes the sintering of the NiO particles of the precursor. This holds for the reduction of all supported oxidic systems when H₂O forms. This is shown clearly by comparing Figs. 3b and 3c with Figs. 3d and 3e. The unsupported NiP_{0.5} samples are hardly influenced by the flow rate, whereas the temperature maxima of the supported samples shift to higher values at a lower flow rate. The higher reduction rate as well as the formation of smaller particles in our system indicates that more-volatile P species are formed at a higher rate, and diffuse more easily into the Ni particles.

The exact reduction product of phosphate in our reaction is not known, but the reduction must proceed in several steps and volatile species such as elemental P (P₄) or phosphines P_xH_y are probably formed. At higher temperatures, thermodynamics predict that elemental phosphorus is present in the form of P₄ molecules in equilibrium with P₂ molecules (35). Phosphines P_xH_y decompose at higher temperatures to elemental P and H₂. This decomposition may be catalyzed by Ni particles that are formed first; Ryndin *et al.* observed that Ni particles on alumina decompose AsPh₃ to benzene and As (36). The formed As reacted at pressures of 6–40 bar and temperatures of 423–473 K with the Ni particles but not with the support and formed NiAs. If a temperature of 423–473 K is sufficient for As to diffuse into Ni particles, then it should be possible for P to react with Ni.

In the case of amorphous Ni–P alloys supported on SiO₂, Li *et al.* showed that a broad signal around 45° 2 θ in the XRD pattern corresponds to an amorphous Ni–P phase (10). Their samples were prepared by electroless plating and contained less than 25 at% P, lower than the P content in our samples. After annealing at higher temperatures, they did not observe any formation of Ni₃P below 873 K. However, in an earlier publication the same group reported the detection of Ni₃P after an oxidation-reduction cycle of an unsupported amorphous Ni–P alloy (20 at% P) at 553 K (11). We conclude that the higher P content of our samples and the proposed formation of Ni₃P in our sample.

The reaction of P with Ni proceeds through a sequence of intermediates, the first being Ni₃P. In the Ni–P phase diagram, Ni₃P is the Ni phosphide with the lowest P content close to Ni metal (35). From the phase diagram, Ni_5P_2 is expected to form if the P content is increased. However, we detected Ni₁₂P₅, but not Ni₅P₂. The structure and chemistry of Ni₅P₂ are not fully understood. A phase of the composition Ni₅P₂ was first described by Konstantinow, who observed a low-temperature and a high-temperature modification (37). Nowotny and Henglein confirmed the existence of Ni₅P₂ by XRD (38). Neither Saini et al. (39) nor Larsson (22) were able to determine the crystal structure of this phase. Furthermore, Larsson corrected the composition of the Ni₅P₂ phase in his study to Ni_{2.55}P. Other authors detected Ni₅P₂ when they annealed amorphous Ni–P alloys (40). Pittermann and Ripper found that the P content of electrodeposited Ni-P alloys determines which crystalline Ni phases form upon heating. They detected the formation of Ni and Ni₃P for alloys with P contents below 20 at% and the formation of Ni₅P₂ for P contents between 20 and 29 at%. The Ni_5P_2 phase was metastable, however, and decomposed to Ni₃P and Ni₁₂P₅ at 930 K. For even higher P contents, the amorphous phase transformed directly to mixtures of Ni₁₂P₅ and Ni₂P. Other authors reported that Ni_5P_2 has a large homogeneity range (5). All these reports indicate that a phase with a composition close to Ni₅P₂ probably exists, but that the thermodynamic stability range of this phase is not clear. Metastable Ni_5P_2 , as observed by Pittermann and Ripper, may also have formed during the reduction of our samples, but its thermal lability may have hindered us from detecting it.

Rundqvist and Larsson showed that the structures of Ni_3P and $Ni_{12}P_5$ are very similar (Figs. 8 and 9) (41). Both phosphides crystallize in a tetragonal structure with similar lattice constants (Table 3). The unit cell of Ni_3P contains eight formula units, i.e., 24 Ni and 8 P atoms, whereas the unit cell of $Ni_{12}P_5$ contains two formula units, i.e., 24 Ni atoms and 10 P atoms. The Ni_3P structure has P atoms

FIG. 8. Projection of the Ni₃P structure along the c axis (2 × 2 unit cells). Atoms outside the lines indicating the cell edges were added to emphasize the structure motif. Ni atoms are presented as spheres located at the corners of polyhedra formed around the P atoms.

FIG. 9. Projection of the Ni₁₂P₅ structure along the *c* axix (2×2 unit cells). Atoms outside the lines indicating the cell edges were added to emphasize the structure motif. Ni atoms are presented as gray spheres located at the corners of polyhedra formed around the P atoms on 8*h* sites. P atoms at the 2*a* sites are shown as dark gray spheres.

TABLE 3

Crystallographic Data of the Phos	sphides
-----------------------------------	---------

Compound	Structure type	Space group ^a	\mathbf{Z}^b	Lattice constants (Å) ^c
$\begin{array}{c} Ni_{3}P\\ Ni_{12}P_{5}\\ Ni_{2}P \end{array}$	$\begin{array}{c} Fe_3P\\ Ni_{12}P_5\\ Fe_2P \end{array}$	82 (IĀ) 87 (I4/m) 189 (PĒ2m)	8 2 3	a = b = 8.954, c = 4.386 a = b = 8.646, c = 5.070 a = b = 5.859, c = 3.382; $\alpha = 120^{\circ}$

^{*a*} Space group number and short Hermann–Mauguin symbol according to the International Tables for Crystallography.

^b Formula units per unit cell.

^c Angles are given only when they deviate from 90°.

on only one crystallographic site and each P atom is coordinated by nine Ni atoms that form a distorted tricapped trigonal prism (Table 4). The two sites in $Ni_{12}P_5$ have coordination numbers of 10 and 8 (Table 4). The 10 Ni atoms form an irregular polyhedron, whereas the eight Ni atoms are located on the corners of a cube. This cubic coordination is clearly seen in the projection of the $Ni_{12}P_5$ structure at the centers and corners of the unit cells (Fig. 9). The occupation ratio of the two P sites in $Ni_{12}P_5$ is four, as given by the ratio of the sites' multiplicities (Table 4). Again comparing Ni₁₂P₅ and Ni_3P (= $Ni_{12}P_4$), $Ni_{12}P_5$ has an additional P atom, which is located at the cubic site. A comparison of the structures of Ni₃P with Ni₁₂P₅ reveals empty channels in Ni₃P, whereas in $Ni_{12}P_5$ they are filled with the cubic P sites (Fig. 9). The channels in Ni₃P are rather narrow but can be widened by small displacements of some of the Ni atoms, so that the cubic sites of the Ni₁₂P₅ structure form. Although Ni₃P and Ni₁₂P₅ do not share a direct boundary in the phase diagram, it is likely that a kinetically controlled transformation from

TABLE 4

Site Symmetries and P–M Distances in the Local Environment of P Atoms

Compound	Atom	Position ^a	Distances P–M (Å)
Ni ₂ P	P(1)	$2c(\overline{6})$	3×2.21 6×2.46
	P(2)	$1b(\overline{6}2m)$	6×2.27 3×2.37
Ni ₁₂ P ₅	P(1)	8h(m)	$4 \times 2.23 - 2.24$ 2×2.43 2×2.46 2×2.60
Ni ₃ P	P(2) P	$2a(4/m) \\ 8g(1)$	$8 \times 2.25 2 \times 2.21 3 \times 2.28 - 2.29 4 \times 2.32 - 2.34$

^{*a*} Number and letter refer to the multiplicity and Wyckoff letter of the respective crystallographic position. The site symmetry of the crystallographic position (Hermann–Mauguin notation) is given in parentheses.

FIG. 10. Ni₂P structure $(3 \times 3 \times 2$ unit cells). Atoms outside the lines indicating the cell edges were added to emphasize the structure motif. Ni atoms are presented as light gray spheres located at the corners of polyhedra formed around the P atoms. Polyhedra around P atoms on 2c sites are dark gray; polyhedra around P atoms on 1b sites are light gray.

 Ni_3P to $Ni_{12}P_5$ takes place when P atoms diffuse into the empty channels of the Ni_3P structure.

Ni₁₂P₅ forms a direct phase boundary with Ni₂P up to high temperatures (35). When Ni_2P is written as $Ni_{12}P_6$, it is obvious that the introduction of another P atom into Ni₁₂P₅ gives the correct composition. However, the structure of Ni₂P differs considerably from that of Ni₁₂P₅. The Ni₂P structure can be visualized as being made up of building blocks of two different tricapped trigonal prisms that form stacks. The stacks are connected by sharing edges and faces with the surrounding stacks (Fig. 10). The large differences between the two structures make a complete rearrangement of the Ni and P atoms necessary. This may explain why the formation of Ni₂P is difficult in the supported materials if Ni₁₂P₅ forms first. If Ni₁₂P₅ does not form, however, then the direct formation of Ni₂P from Ni or Ni₃P and P is easily accomplished, as seen for the unsupported NiP_{0.5}, where no phase other than Ni₂P was detected (Fig. 1). The fact that only Ni_2P forms from the unsupported precursor may be due to the more homogeneous distribution of Ni and P when Ni₂P is prepared in one step. The two-step preparation of the supported precursor and the strong interaction of Ni²⁺ ions with the SiO₂ surface might lead to the segregation of the Ni and phosphate species. As can be seen from the TPR measurements at high flow rate, the reduction of the supported and unsupported NiP_{0.5} precursors starts at different temperatures, 520 and 600 K, respectively, but is complete at about the same temperature (Figs. 3b and 3c). However, the relative H₂ consumption of the first peak is higher for the supported $NiP_{0.5}$. The supported sample contains smaller NiO particles, which start to reduce at around 520 K, whereas the surface reduction of bigger, unsupported NiO particles starts at around 600 K. Alternatively, more NiO may be present in the supported sample than in the unsupported sample, with the consequence that in the supported sample Ni^{2+} and phosphate ions are more separated. The increased segregation may be another reason that Ni_2P does not form easily on the support. The reactive P compounds must diffuse to the Ni particles to react with them.

The crystal structures of Ni₃P, Ni₁₂P₅, and Ni₂P have been published (22, 41, 42), and site symmetries of the P atoms and P-M distances are listed in Table 4. As described above, the structures of the three phosphides differ, and the Ni₃P structure contains one crystallographic P site, whereas in the structures of Ni₂P and Ni₁₂P₅ two P sites are distinguishable. As a consequence, one signal is observed in Ni₃P and two NMR signals are observed in Ni_2P and $Ni_{12}P_5$ (Fig. 11). The three Ni phosphides belong to the metal-rich phosphides. Metal-rich phosphides usually have metallic character (43-45) and their metal-metal distances are usually close to those of the pure metal (43). The shortest metalmetal distances in Ni₃P, Ni₁₂P₅, and Ni₂P are 2.44, 2.53, and 2.61 Å, respectively, while the shortest M-M distance in Ni metal is 2.49 Å. The short M-M distances imply strong metal bonding, which should result in metallic properties such as metallic conductivity. This was confirmed for Ni₂P by Shirotani *et al.* (46). The magnetic susceptibility of Ni_2P , Ni₃P, and other Ni phosphides hardly depends on temperature; thus, these materials are classified as Pauli paramagnets, which provides further evidence of their metallic character (46, 47).

The metallic character of the Ni phosphides explains why the observed NMR shifts are so high (Table 2). In

FIG. 11. Overview of the observed ³¹P MAS NMR spectra of (a) Ni₃P/SiO₂, (b)Ni₁₂P₅/SiO₂, (c) Ni₂P/SiO₂, and (d) unsupported Ni₂P.

diamagnetic phosphorus compounds, the shifts are in the range of 200 to -500 ppm (44). The shift in metals is one order of magnitude larger than that in diamagnetic compounds (48). This so-called Knight shift is caused by the density of unpaired conduction electrons at the position of the NMR-observed nuclei in metallic compounds (48). It is difficult to measure Knight shifts in powders accurately, because in addition to the dipolar broadening, susceptibility broadening is also observed (49). The application of magicangle spinning (MAS) eliminates the dipolar broadening and partly suppresses the effect of the susceptibility broadening if the spinning rate is sufficiently high (50).

A large number of ³¹P MAS NMR studies on insulating and semiconducting phosphides have been published (51-54), but only few MAS NMR studies are on alloys such as transition-metal phosphides. To the best of our knowledge, Ni₃P is the only Ni phosphide that has been characterized by ³¹P MAS NMR (55). Furo *et al.* reported an average Knight shift of 1790 ppm for Ni₃P, which is close to our value. In the Ni₂P structure, two different crystallographic P sites are present and, thus, two NMR signals are observed. The relative occurrence of the two sites should be reflected in the ratio of their signal intensities. The ratio between the intensities of the sideband pattern at around 4078 ppm and that at 1487 ppm is around 1.6 ± 0.2 for the unsupported as well as the supported Ni₂P samples, which is in moderate agreement with the expected value of two. Effects due to the paramagnetic nature of the samples might explain the deviation (see below). The electronic properties must be very different at the two P sites because the difference between the Knight shifts is very large in Ni₂P. In $Ni_{12}P_5$ the difference is much smaller but large enough to observe two signals, as expected from the crystal structure. Although the sites of $Ni_{12}P_5$ differ to a much greater extent than those in Ni₂P, which are both tricapped trigonal prismatic, the difference in their electronic properties appears to be nevertheless smaller. The intensity ratio between the two signals should be four according to the relative occurrence of the two sites in the structure model of $Ni_{12}P_5$. The value found for the different samples containing Ni₁₂P₅ is 4 ± 0.5 .

The particle sizes of the nickel phosphides supported on SiO_2 studied in this work were large enough to enable the identification of the nickel phosphide formed by XRD. In catalysis, however, one is interested in highly dispersed catalytic materials, and these often have XRD lines that are too broad to be observed. For such well-dispersed systems, the MAS NMR technique might offer the possibility of identifying small particles, because NMR spectroscopy is not restricted to materials with long-range order. The samples described in this work contain rather large particles, as indicated by the crystallite sizes given in Table 1. From the point of view of catalytic performance the particles are unfavorably large. However, this size made it possible to detect the different nickel phosphides by XRD and to correlate these results with the NMR spectra. This allowed us to collect NMR data that can be used in future studies for the characterization of metal phosphide particles, which are too small to be detected by XRD. Another technique that may be used to identify small particles is EXAFS. This technique requires synchrotron radiation, however, and is thus less generally applicable. Furthermore, the detection of different metal phosphide phases in one and the same sample can hardly be done by EXAFS. The MAS solid state NMR of ³¹P thus proved to be very helpful in identifying the nickel phosphides formed.

NMR spectroscopy can be used to quantify the different species from the integrated signal intensities. However, problems arise when paramagnetic species are present, because the short relaxation times may cause loss of signal intensity during the detector's dead time (20). Furthermore, the proximity of a paramagnetic ion to a ³¹P nucleus might broaden its NMR line beyond observability so that some fractions become NMR invisible. Therefore, we cannot exclude the possibility that phases exist in our supported samples that are XRD invisible because of their amorphous nature and NMR invisible because of their proximity to a paramagnetic center. As a consequence, we refrained for the moment from a quantitative analysis of the NMR data. Nevertheless, the quantitative analysis of paramagnetic species is possible when the spin echo mapping technique is applied, as shown by Tuel et al. for paramagnetic phosphate-based catalysts (56). Spin echo experiments of supported phosphide catalysts will be performed in the future.

5. CONCLUSIONS

We were able to prepare Ni₂P, Ni₃P, and Ni₁₂P₅ supported on SiO₂ by reducing an oxidic precursor by varying the reduction parameters and the Ploading. In a first step Ni metal is formed that catalyzes the reduction of phosphate to a reactive P species. This species probably reacts through different intermediates; two of them could be identified as Ni₃P and $Ni_{12}P_5$. The support influences the reduction behavior very much since the reduction of the unsupported oxidic NiP_{0.5} precursor yielded only Ni₂P and pure Ni₂P was not obtained from the supported $NiP_{0.5}$ precursor but only from the $NiP_{0.65}$ precursor under optimized reaction conditions. We were able to characterize the three different Ni phosphides by ³¹P MAS NMR spectroscopy. The large NMR shifts are interpreted as Knight shifts and are easily distinguishable from shifts caused by diamagnetic phosphates. X-ray diffraction is not a technique suitable for identifying small metal phosphide crystallites supported on a carrier like SiO₂, but such small crystallites are important for catalysis. Since solid state NMR can be used to characterize amorphous or nanocrystalline metal phosphides, solid state NMR could be an alternative to EXAFS for characterizing supported metal phosphides.

REFERENCES

- Kerfoot, Derek G. E., *in* "Ullmann's Encyclopedia of Industrial Chemistry. (Electronic Release)," 6th ed. Wiley-VCH, Weinheim, 1999.
- Okamoto, Y., Nitta, Y., Imanaka, T., and Teranishi, S., J. Catal. 64, 397 (1980).
- Yoshida, S., Yamashita, H., Funabiki, T., and Yonezawa, T., J. Chem. Soc. Faraday Trans. 1 80, 1435 (1984).
- Yamashita, H., Yoshikawa, M., Funabiki, T., and Yoshida, S., J. Chem. Soc. Faraday Trans. 1 81, 2485 (1985).
- Lee, K. J., and Nash, P., *in* "Phase Diagrams of Binary Nickel Alloys" (P. Nash, Ed.), p. 235. ASM International, Materials Park, OH, 1991.
- Shibata, M., and Masumoto, T., *in* "Preparation of Catalysts IV" (B. Delmon, P. Grange, P. A. Jacobs, and G. Poncelet, Eds.), p. 353. Elsevier, Amsterdam, 1987.
- 7. Brenner, A., and Riddell, G., J. Res. Natl. Bur. Stand. 39, 385 (1947).
- Ko, S.-H., Chou, T.-C., and Yang, T.-J., *Ind. Eng. Chem. Res.* 34, 457 (1995).
- 9. Deng, J. F., Zhang, X. P., and Enze, M., Appl. Catal. 37, 339 (1988).
- Li, H. X., Wang, W. J., Li, H., and Deng, J. F., J. Catal. 194, 211 (2000).
- Deng, J. F., Chen, H. Y., Bao, X. H., and Muhler, M., *Appl. Surf. Sci.* 81, 341 (1994).
- Aronsson, B., Lundström, T., and Rundqvist, S., "Borides, Silicides and Phosphides—A Critical Review of Their Preparation, Properties and Crystal Chemistry." Methuen, London, 1965.
- Gopalakrishnan, J., Pandey, S., and Rangan, K. K., *Chem. Mater.* 9, 2113 (1997).
- Sweeny, N. P., Rohrer, C. S., and Brown, O. W., J. Am. Chem. Soc. 80, 799 (1958).
- 15. Nozaki, F., and Adachi, R., J. Catal. 40, 166 (1975).
- 16. Nozaki, F., Kitoh, T., and Sodesawa, T., J. Catal. 62, 286 (1980).
- Robinson, W. R. A. M., van Gestel, J. N. M., Koranyi, T. I., Eijsbouts, S., van der Kraan, A. M., van Veen, J. A. R., and de Beer, V. H. J., *J. Catal.* 161, 539 (1996).
- 18. Stinner, C., Prins, R., and Weber, Th., J. Catal. 202, 187 (2001).
- Mangnus, P. J., van Veen, J. A. R., Eijsbouts, S., de Beer, V. H. J., and Moulijn, J. A., *Appl. Catal.* 61, 99 (1990).
- 20. Kraus, H., and Prins, R., J. Catal. 170, 20 (1997).
- 21. Nolze, G., and Kraus, W., Powder Diffr. 13, 256 (1998).
- 22. Larsson, E., Ark. Kemi 23, 335 (1965).
- 23. Herzfeld, J., and Berger, A. E., J. Chem. Phys. 73, 6021 (1980).
- 24. Massiot, D., Thiele, H., and Germanus, A., Bruker Rep. 140, 43 (1994).
- 25. Bassett, H., and Bedwell, W. L., J. Chem. Soc. 871 (1933).
- 26. Eichele, K., and Wasylishen, R. E., J. Phys. Chem. 98, 3108 (1994).
- Gunter, G. C., Craciun, R., Tam, M. S., Jackson, J. E., and Miller, D. J., J. Catal. 164, 207 (1996).
- Krawietz, T. R., Lin, P., Lotterhos, K. E., Torres, P. D., Barich, D. H., Clearfield, A., and Haw, J. F., J. Am. Chem. Soc. 120, 8502 (1998).

- 29. Jones, A., and McNicol, B., "Temperature-Programmed Reduction for Solid Materials Characterization." Dekker, New York, 1986.
- El Belghiti, A. A., Boukhari, A., and Holt, E. M., J. Alloys Compd. 188, 128 (1992).
- 31. Louis, C., Cheng, Z. X., and Che, M., J. Phys. Chem. 97, 5703 (1993).
- Baiker, A., and Maciejewski, M., J. Chem. Soc. Faraday Trans. 1 80, 2331 (1984).
- Verhaak, M. J. F. M., van Dillen, A. J., and Geus, J. W., *Appl. Catal.* A 105, 251 (1993).
- 34. Burattin, P., Che, M., and Louis, C., J. Phys. Chem. B 104, 10482 (2000).
- 35. Myers, C. E., and Conti, T. J., J. Electrochem. Soc. 132, 454 (1985).
- Ryndin, Y. A., Candy, J. P., Didillon, B., Savary, L., and Basset, J. M., J. Catal. 198, 103 (2001).
- 37. Konstantinow, N., Z. Anorg. Chem. 60, 405 (1908).
- 38. Nowotny, H., and Henglein, E., Z. Phys. Chem. B 40, 281 (1938).
- Saini, G. S., Calvert, L. D., and Taylor, J. B., Can. J. Chem. 42, 1511 (1964).
- 40. Pittermann, U., and Ripper, S., Phys. Status Solidi A 93, 131 (1986).
- 41. Rundqvist, S., and Larsson, E., Acta Chem. Scand. 13, 551 (1959).
- 42. Rundqvist, S., Hassler, E., and Lundvik, L., Acta Chem. Scand. 16, 242 (1962).
- von Schnering, H. G., and Hönle, W., in "Encyclopedia of Inorganic Chemistry" (K. R. Bruce, Ed.), vol. 6, p. 3106. Wiley, Chichester, 1994.
- Corbridge, D. E. C., "Phosphorus 2000—Chemistry, Biochemistry & Technology," Elsevier, Amsterdam, 2000.
- 45. Ripley, R. L., J. Less-Common Met. 4, 496 (1962).
- Shirotani, I., Takahashi, E., Mukai, N., Nozawa, K., Kinoshita, M., Yagi, T., Suzuki, K., Enoki, T., and Hino, S., *Jpn. J. Appl. Phys. Part 1* 32, 294 (1993).
- Zeppenfeld, K., and Jeitschko, W., J. Phys. Chem. Solids 54, 1527 (1993).
- Knight, W. D., and Kobayashi, S., *in* "Encyclopedia of Nuclear Magnetic Resonance" (D. M. Grant and R. K. Harris, Eds.), p. 2672. Wiley, Chichester, 1996.
- 49. Drain, L. E., Proc. Phys. Soc. 80, 1380 (1962).
- Andrew, E. R., Hinshaw, W. S., and Tiffen, R. S., *Phys. Lett. A* 46, 57 (1973).
- Nissan, R. A., and Vanderah, T. A., J. Phys. Chem. Solids 50, 347 (1989).
- Lathrop, D., Franke, D., Maxwell, R., Tepe, T., Flesher, R., Zhang, Z., and Eckert, H., Solid State Nucl. Magn. Reson. 1, 73 (1992).
- Tomaselli, M., deGraw, D., Yarger, J. L., Augustine, M. P., and Pines, A., *Phys. Rev. B* 58, 8627 (1998).
- Schmedt auf der Günne, J., Kaczmarek, S., van Wüllen, L., Eckert, H., Paschke, D., Foecker, A. J., and Jeitschko, W., *J. Solid State Chem.* 147, 341 (1999).
- Furo, I., Bakonyi, I., Tompa, K., Zsoldos, E., Heinmaa, I., Alla, M., and Lippmaa, E., J. Phys. Condens. Matter 2, 4217 (1990).
- 56. Tuel, A., Canesson, L., and Volta, J. C., Colloid Surf. A 158, 97 (1999).